Salmon can detect earth’s magnetic field

block

Life Desk :Last year, a team of scientists presented evidence of a correlation between the migration patterns of ocean salmon and the Earth’s magnetic field.This suggests that it may help explain how the fish can navigate across thousands of miles of water to find their river of origin.This week, scientists confirmed the connection between salmon and the magnetic field following a series of experiments at the Oregon Hatchery Research Center in the Alsea River basin. Researchers exposed hundreds of juvenile Chinook salmon to different magnetic fields that exist at the latitudinal extremes of their oceanic range. Fish responded to these “simulated magnetic displacements” by swimming in the direction that would bring that toward the center of their marine feeding grounds.The study, which was funded by Oregon Sea Grant and the Oregon Department of Fish and Wildlife, will be published this month in the forthcoming issue of Current Biology.”What is particularly exciting about these experiments is that the fish we tested had never left the hatchery and thus we know that their responses were not learned or based on experience, but rather they were inherited,” said Nathan Putman, a postdoctoral researcher at Oregon State University and lead author on the study.”These fish are programmed to know what to do before they ever reach the ocean,” he added.To test the hypothesis, the researchers constructed a large platform with copper wires running horizontally and vertically around the perimeter. By running electrical current through the wires, the scientists could create a magnetic field and control the both the intensity and inclination angle of the field. They then placed 2-inch juvenile salmon called “parr” in 5-gallon buckets and, after an acclimation period, monitored and photographed the direction in which they were swimming.Fish presented with a magnetic field characteristic of the northern limits of the oceanic range of Chinook salmon were more likely to swim in a southerly direction, while fish encountering a far southern field tended to swim north. In essence, fish possess a “map sense” determining where they are and which way to swim based on the magnetic fields they encounter.”The evidence is irrefutable,” said co-author David Noakes of OSU, senior scientist at the Oregon Hatchery Research Center and the 2012 recipient of the American Fisheries Society’s Award of Excellence. “I tell people: The fish can detect and respond to the Earth’s magnetic field. There can be no doubt of that.”

block