Radioactive Compound

And Its Chemical Aspects

block

Shishir Reza :
Waste is any product of metabolism that is not required for further metabolic process and is therefore excreted from the body. Waste is directly linked to human development, both technologically and socially. The compositions of different wastes have varied over time and location, with industrial development and innovation being directly linked to waste materials. Examples of this include plastics and nuclear technology. Some components of waste have economical value and can be recycled once correctly recovered. Chemical waste is a waste that is made from harmful chemicals.
Sources of Contamination
Radioactive waste comes from a number of sources. The majority of waste originates from the nuclear fuel cycle and nuclear weapons reprocessing. However, other sources include medical and industrial wastes, as well as naturally occurring radioactive materials (NORM) that can be concentrated as a result of the processing or consumption of coal, oil and gas, and some minerals, as discussed below.
Waste from the front end of the nuclear fuel cycle is usually alpha emitting waste from the extraction of uranium. It often contains radium and its decay products. Uranium dioxide (UO2) concentrate from mining is not very radioactive – only a thousand or so times as radioactive as the granite used in buildings. It is refined from yellowcake (U3O8), then converted to uranium hexafluoride gas (UF6). As a liquid, it undergoes enrichment to increase the U-235 content from 0.7% to about 4.4% (LEU). It is then turned into a hard ceramic oxide (UO2) for assembly as reactor fuel elements. The main by-product of enrichment is depleted uranium (DU), principally the U-238 isotope, with a U-235 content of ~0.3%. It is stored, either as UF6 or as U3O8. Some is used in applications where it’s extremely high density makes it valuable, such as the keels of yachts, and anti-tank shells. It is also used with plutonium for making mixed oxide fuel (MOX) and to dilute, or down blend, highly enriched uranium from weapons stockpiles which is now being redirected to become reactor fuel.
The back end of the nuclear fuel cycle, mostly spent fuel rods, contains fission products that emit beta and gamma radiation, and actinides that emit alpha particles, such as uranium-234, neptunium-237, plutonium-238 and americium-241, and even sometimes some neutron emitters such as californium (Cf). These isotopes are formed in nuclear reactors. It is important to distinguish the processing of uranium to make fuel from the reprocessing of used fuel. Used fuel contains the highly radioactive products of fission (see high level waste below). Many of these are neutron absorbers, called neutron poisons in this context. These eventually build up to a level where they absorb so many neutrons that the chain reaction stops, even with the control rods completely removed. At that point the fuel has to be replaced in the reactor with fresh fuel, even though there is still a substantial quantity of uranium-235 and plutonium present. In the United States, this used fuel is stored, while in countries such as Russia, the United Kingdom, France, Japan and India, the fuel is reprocessed to remove the fission products, and the fuel can then be re-used. This reprocessing involves handling highly radioactive materials, and the fission products removed from the fuel are a concentrated form of high-level waste as are the chemicals used in the process. While these countries reprocess the fuel carrying out single plutonium cycles, India is the only country known to be planning multiple plutonium recycling schemes.
Fuel Composition and Long Term Radioactivity
Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for spent nuclear fuel (SNF). When looking at long term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. An example of this effect is the use of nuclear fuels with thorium. Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. The SNF of a cycle with thorium will contain U-233, an isotope with a half-life of 159,000 years. Its radioactive decay will strongly influence the long-term activity curve of the SNF around 1 million years. A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right.
The burnt fuels are thorium with reactor-grade plutonium (RGPu), thorium with weapons-grade plutonium (WGPu) and Mixed Oxide fuel (MOX). For RGPu and WGPu, the initial amount of U-233 and its decay around 1 million years can be seen. This has an effect in the total activity curve of the three fuel types. The absence of U-233 and its daughter products in the MOX fuel results in a lower activity in region 3 of the figure on the bottom right, whereas for RGPu and WGPu the curve is maintained higher due to the presence of U-233 that has not fully decayed. The use of different fuels in nuclear reactors results in different SNF composition, with varying activity curves.
Waste from nuclear weapons decommissioning is unlikely to contain much beta or gamma activity other than tritium and americium. It is more likely to contain alpha-emitting actinides such as Pu-239 which is a fissile material used in bombs, plus some material with much higher specific activities, such as Pu-238 or Po. In the past the neutron trigger for an atomic bomb tended to be beryllium and a high activity alpha emitter such as polonium; an alternative to polonium is Pu-238. For reasons of national security, details of the design of modern bombs are normally not released to the open literature.
It is likely that the fissile material of an old bomb which is due for refitting will contain decay products of the plutonium isotopes used in it, these are likely to include U-236 from Pu-240 impurities, plus some U-235 from decay of the Pu-239; due to the relatively long half-life of these Pu isotopes, these wastes from radioactive decay of bomb core material would be very small, and in any case, far less dangerous (even in terms of simple radioactivity) than the Pu-239 itself. The beta decay of Pu-241 forms Am-241; the in-growth of americium is likely to be a greater problem than the decay of Pu-239 and Pu-240 as the americium is a gamma emitter (increasing external-exposure to workers) and is an alpha emitter which can cause the generation of heat. The plutonium could be separated from the americium by several different processes; these would include pyrochemical processes and aqueous/organic solvent extraction. A truncated PUREX type extraction process would be one possible method of making the separation.
Radioactive medical waste tends to contain beta particle and gamma ray emitters. It can be divided into two main classes. In diagnostic nuclear medicine a number of short-lived gamma emitters such as technetium-99m are used. Many of these can be disposed of by leaving it to decay for a short time before disposal as normal waste. Other isotopes used in medicine, with half-lives in parentheses, include:Y-90, used for treating lymphoma (2.7 days); I-131, used for thyroid function tests and for treating thyroid cancer (8.0 days); Sr-89, used for treating bone cancer, intravenous injection (52 days); Ir-192, used for brachytherapy (74 days); Co-60, used for brachytherapy and external radiotherapy (5.3 years); Cs-137, used for brachytherapy, external radiotherapy (30 years)
Industrial source waste can contain alpha, beta, neutron or gamma emitters. Gamma emitters are used in radiography while neutron emitting sources are used in a range of applications, such as oil well logging. Processing of substances containing “natural” radioactivity is often known as NORM. A lot of this waste is alpha particle-emitting matter from the decay chains of uranium and thorium. The main source of radiation in the human body is potassium-40 (40K). Most rocks, due to their components, have a certain, but low level, of radioactivity. Coal contains a small amount of radioactive uranium, barium, thorium and potassium, but, in the case of pure coal, this is significantly less than the average concentration of those elements in the Earth’s crust. The more active ash minerals become concentrated in the fly ash precisely because they do not burn well. The radioactivity of fly ash is about the same as black shale and is less than phosphate rocks, but is more of a concern because a small amount of the fly ash ends up in the atmosphere where it can be inhaled.
Radiation Monitoring and Biological Effects
The radiation monitoring involves the measurement of radiation dose or radionuclide contamination for reasons related to the assessment or control of exposure to radiation or radioactive substances, and the interpretation of the results.
The biological effects of internally deposited radionuclides depend greatly on the activity and the biodistribution and removal rates of the radionuclide, which in turn depends on its chemical form. The biological effects may also depend on the chemical toxicity of the deposited material, independent of its radioactivity. Some radionuclides may be generally distributed throughout the body and rapidly removed, as is the case with tritiated water. Some radionuclide’s may target specific organs and have much lower removal rates. For instance, the thyroid gland takes up a large percentage of any iodine that enters the body. If large quantities of radioactive iodine are inhaled or ingested, the thyroid may be impaired or destroyed, while other tissues are affected to a lesser extent. Radioactive iodine is a common fission product; it was a major component of the radiation released from the Chernobyl disaster, leading to nine fatal cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the thyroid’s selective uptake of iodine.
Concluding Remarks
Global waste production is a critical issue in environmental quality. Every day huge amount of hazardous and toxic waste discharges into our natural environment. These materials throw into the environment without any treatment, which are very harmful for organisms live in the environment. Owing to increasing industrialization, and ever increasing population, power plants and others using different types of chemicals has been steeply increasing over the last few decades. This in turn resulted in steep increase in the generation of wastes both in developed and developing countries. Recycling and reuse of the waste helps to reduce the problem of waste disposal.

(Shishir Reza, an Environmental Analyst & Associate Member, Bangladesh Economic Association)

block